Gas-Phase Ion-Molecule Reactions of Dioxygen Anion Radical $(0_{2}^{-}.)$

Richard N. McDonald* and A. Kasem Chowdhury

Contribution from the Department of Chemistry, Kansas State University, Manhattan, Kansas 66506. Received July 26, 1984

Abstract: The gas-phase ion-molecule reactions of dioxygen anion radical (O_2^{-}) with a variety of neutral organic substrates have been studied in a flowing afterglow apparatus. The S_N2 reactions O₂- with CH₃Br and CH₃Cl yielded Br⁻ and Cl⁻, respectively, with rate contants near the collision limit. The reactions of O_2^{-} with a series of methyl esters proceed by a major S_N^2 displacement channel with the reaction efficiencies (k/k_{ADO}) in the order CF₃CO₂CH₃ \gg HCO₂CH₃ > H₂C=CHCO₂CH₃ > CH₂CO₂CH₃. These facts lead to the conclusion that O₂· is intrinsically and kinetically an excellent nucleophile in gas-phase S_N2 displacement reactions with CH₃X molecules. Termolecular nucleophilic carbonyl addition yielding adduct anion-radicals is observed as minor reaction channels with the esters HCO_2CH_3 and $CH_3CO_2CH_3$, and with $CF_3C(=O)CH_3$, but is the major channel with the ketones $(CH_3)_2C=0$ and $CH_3C(=0)C(=0)CH_3$. The reaction of O_2 with $(CF_3)_2C=0$ is considered to occur by exclusive electron transfer, giving $(CF_3)_2CO^{-1}$. Reaction of O_2^{-1} with H_2C =CHCN proceeded stepwise, forming monomeric and dimeric species, $O_2(CH_2CHCN)_{1,2}^{-1}$. HS⁻¹ was the only product formed in the reaction of O_2^{-1} with thiacyclopropane.

As pointed out in a recent review on the chemistry of dioxygen anion radical, O_2^{-1} , commonly referred to as superoxide anion, "Little was known in 1969 about the reactivity of superoxide in any environment".^{1a} This situation has changed dramatically in the intervening years for both the condensed-1 and gas-phase chemistry² of O_2^{-} . However, a disparity exists in many of the reaction and reagent types used in the condensed- and gas-phase experiments.

Our interest in determining the intrinsic gas-phase organic chemistry of O_2^{-} stemmed from our "rediscovery" of a convenient method to generate O_2^{-} by electron transfer from allyl anion (C_3H_5) to O₂ (eq i); this reaction was previously described by

$$C_{3}H_{5}^{-} + {}^{3}O_{2} - - \begin{bmatrix} 0.98 \\ 0.02 \\ 0.02 \end{bmatrix} + C_{3}H_{5}^{-} + C_{3}H_{5}^{-}$$
 (i)

Bohme and Young $(k = 2.8 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$.³ From the thermochemical properties of O_2 , O_2^{-} , and several related molecules (EA(O_2) = 10.1 ± 0.2 kcal mol⁻¹⁴ = $-\Delta H_f^{\circ}(O_2^{-})$, $\Delta H_f^{\circ}(\text{HO}_2) = 2.5 \pm 0.6 \text{ kcal mol}^{-1,5} \Delta H_f^{\circ}(\text{HO}_2) = -24.9 \pm 0.7 \text{ kcal mol}^{-1,6}$, values for the proton⁷ and H-atom affinities of O_2^{-1} . were calculated (eq ii and iii).

$$O_2^- + H^+ \xrightarrow{PA} HO_2^-$$
 (ii)

$$PA(O_2^{-1}) = 354.6 \pm 0.8 \text{ kcal mol}^{-1}$$

$$^{-}O_{2}H \xrightarrow{DH^{\circ}} O_{2} \cdot + H \cdot$$
 (iii)

$$DH^{\circ}(^{-}O_2 - H) = 66.2 \pm 0.9 \text{ kcal mol}^{-1}$$

 O_2^- in aprotic solvents is reported to be a powerful nucleophile in $S_N 2$ displacement reactions with primary and secondary alkyl

(6) Bierbaum, V. M.; Schmitt, R. J.; DePuy, C. H.; Mead, R. D.; Schulz, P. A.; Lineberger, W. C. J. Am. Chem. Soc. 1981, 103, 6262–6263. (7) $\Delta H_{\rm f}^{\circ}({\rm H}^+) = 367.2$ kcal mol^{-1.4e}

halides yielding ultimately dialkyl peroxides along with the product of elimination.^{1a} As we will show, high nucleophilicity carries over to the gas phase in the reactions of O_2 with CH_3X derivatives. This feature of the gas-phase chemistry of O_2^{-} coupled with its low PA (this is similar to PA's of ^{-}CN , HS⁻, and c-C₅H₅⁻,⁸ which are kinetically modest⁹ to weak¹⁰ S_N2 nucleophiles) makes O₂-. unique among gas-phase S_N2 nucleophiles studied to date. That is O_2^- , functions similar to HO⁻, CH₃O⁻, and O⁻, in S_N2 reactivity with CH₃X derivatives^{9,11} while it is a relatively weak base and, as an open-shell nucleophile, has a low H-atom affinity. The fact that most of these nucleophilic displacement reactions at sp³ carbon are only modestly exothermic^{9,11} also points to O_2^- being a "super" $S_N 2$ nucleophile.

Experimental Section

The reported gas-phase studies were carried out in a flowing afterglow (FA) apparatus with a modular flow tube similar to that previously described.¹² The FA and the modified ion production region are shown in Figure 1. NH₃ was added via inlet 1 and undergoes dissociative electron attachment producing H_2N^- (m/z 16) contaminated with HO⁻ $(m/z \ 17)$. Efforts to predry the NH₃ did not eliminate $m/z \ 17$. The concentration of NH3 was restricted so that formation of ammonia cluster ions $(m/z \ 34 \ (HO^{-}/NH_3)$ and $33 \ (H_2N^{-}/NH_3))$ represented less than 2% of the signal intensity for m/z 16. Propene was added via inlet 2 and underwent fast H⁺ transfer with H₂N⁻³ and HO⁻ ($k = 2.5 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹)¹³ producing allyl anion, $C_3H_5^-(m/z \ 41)$. O₂ was introduced via inlet 4 which is 25 cm downstream from the mixing juncture of H_2N^-/HO^- with C_3H_6 . Fast electron transfer between $C_3H_5^-$ and O_2 produced $O_2 \sim (m/z \ 32)$ and a trace of $C_2H_3O \sim (m/z \ 43)^3$. The flow continued uninterrupted for 30 cm where collisional stabilization of vibrationally excited O_2^{-} ions with the buffer gas occurs prior to reaching the neutral inlet port and the desired ion-molecule reaction commences. The ion-molecule reaction distance (neutral inlet to first sampling nose cone¹²) was 62.5 cm.

Following addition of O_2 to the flow of $C_3H_5^-$, small signals for a number of background anions, m/z 26 (1%), 35 and 37 (Cl⁻, 3%), 41 (0.5%), 43 (2%), 46 (2%), 48 and 49 (1%). and 50 (1%), were observed in the mass range of 4 to 200 amu. The signal intensities for these background anions are unchanged in the faster reactions of O_2^{-} reported $(k \ge 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1})$ while the signal intensities of the ions m/z

^{(1) (}a) Sawyer, D. T.; Valentine, J. S. Acc. Chem. Res. 1981, 14, 393-400 and references therein. (b) Further comments and reference can be found in correspondence by Fridovich (Fridovich, I. Acc. Chem. Res. 1982, 15, 200) and rebuttal by Sawyer (Sawyer, D. T.; Valentine, J. S. Ibid. 1982, 15, xxx).

⁽²⁾ See Albritton (Albritton, D. L. At. Data Nucl. Data Tables 1978, 22, 1-101) for a summary of ion-molecule reactions measured in flow reactors through 1977.

⁽³⁾ Bohme, D. K.; Young, L. B. J. Am. Chem. Soc. 1970, 92, 3301-3309. (3) Bohme, D. K.; Young, L. B. J. Am. Chem. Soc. 1970, 92, 3301-3309. (4) (a) Celotta, R. J.; Bennett, R. A.; Hall, J. L.; Siegel, M. W.; Levine, J. Phys. Rev. 1972, A6, 631-642. The EA(O₂) agrees with several values listed by: (b) Drzaic, P. S.; Jeffrey, M.; Brauman, J. I. In "Gas Phase Ion Chemistry"; Bowers, M. T., Ed.; Academic Press: New York, 1979; Vol. 3. Chapter 21. (c) Phelps, A. V.; Pack, J. L. Phys. Rev. Lett. 1961, 6, 111-113. (d) Rosenstock, H. M.; Draxl, K.; Steiner, B. W.; Herron, J. T. J. Phys. Chem. Ref. Data, Suppl. 1 1977, 6. Rosenstock et al. give $\Delta H_i^{\circ}_0$ (O₂⁻) = -10.1 kcal mol⁻¹. (e) Stull, D. R.; Prophet, H. "JANAF Thermochemical Table", Natl. Stand. Ref. Data Ser. Natl. Bur. Stand 1971, No. 37- ΔH_0° on: (O₂⁻) = Stand. Ref. Data Ser., Natl. Bur. Stand. 1971, No. $37 - \Delta H_{1^{\circ}298}^{\circ}(O_{2^{\circ}}) = -11.39 \pm 0.5 \text{ kcal mol}^{-1}.$ (5) Howard, C. J. J. Am. Chem. Soc. 1980, 102, 6937-6941.

⁽⁸⁾ Bartmess, J. E.; McIver, R. T. In "Gas Phase Ion Chemistry": Bowers,

M. T., Ed.; Academic Press: New York, 1979; Vol. 2. Chapter 11. (9) Tanaka, K.; Mackay, G. I.; Payzant, J. D.; Bohme, D. K. Can. J. Chem. 1976, 54, 1643-1659.

⁽¹⁰⁾ McDonald, R. N.; Chowdhury, A. K.; Setser, D. W. J. Am. Chem. Soc. 1981, 103, 7586-7589.

⁽¹¹⁾ Olmstead, W. N.; Brauman, J. I. J. Am. Chem. Soc. 1977, 99, 4219-4228.

^{(12) (}a) McDonald, R. N.; Chowdhury, A. K. J. Am. Chem. Soc. 1983, 105, 2194-2203. (b) McDonald, R. N.; Chowdhury, A. K.; Setser, D. W.

Ibid. 1980, 102, 6491-6498.
(13) (a) Bierbaum, V. M.; DePuy, C. H.; Shapiro, R. H.; Stewart, J. H. *J. Am. Chem. Soc.* 1976, 98, 4229-4235. (b) Mackay, G. I.; Lien, M. H.;
Hopkinson, A. C.; Bohme, D. K. Can. J. Chem. 1978, 56, 131-140.

Figure 1. Flowing afterglow apparatus with a modular flow tube and the modified ion production region.

41, 43, 46, 48, 49, and 50 are reduced slightly in the slower reactions with O_2 . Thus, the observed product ions are those exclusively or principally $(\geq 97\%)$ formed in the O₂--neutral molecule reaction.

Helium was the buffer gas in these experiments with 75% inletted into the upstream end of the flow tube and 25% added below the electron gun (Figure 1). The buffer gas pressure $(P_{\rm He})$ and flow velocity (\vec{v}) were maintained by a large, fast-pumping system. These two parameters could be varied from $P_{\text{He}} = 0.3-1.2$ torr and $\bar{v} = 36-80$ m s⁻¹ by adjusting the outlet gate valve and/or altering the helium inlet flow. At $P_{\text{He}} = 1.0$ torr, the composition of the flow at the neutral inlet port was $[He] = 3.2 \times 10^{16}$ atoms cm⁻³, $[NH_3] = [C_3H_6] \approx 10^{12}$ molecules cm⁻³, and $[O_2] =$ 10^{13} molecules cm⁻³ with $[O_2^{-1}] \sim 10^8$ ions cm⁻³. Determination of the bimolecular rate constants for ion-molecule reactions is straightforward under pseudo-first-order conditions (excess neutral molecule concentration) with a fixed reaction distance (time) by methods and equations previously given.12b

The helium used in this study was 99.99% pure, supplied by Welders Products, and was further purified by passage through two traps filled with Davis 4A molecular sieves cooled with liquid nitrogen and then warmed to room temperature in a glass coil prior to introduction into the flow tube. All of the gas and liquid neutral substrates used were obtained from commercial sources. The liquid substrates were freshly distilled, and a constant boiling center-cut was transferred to a gas storage bulb following 3 freeze-pump-thaw degassing cycles. The gas substrates were used directly.

Results

Generation of O_2^{-1} . The reaction selected for generation of O_2^{-1} . was that of allyl anion (C_3H_5) with O_2 (eq i). In our hands, this reaction gave O_2^- (m/z 32) along with a trace of $C_2H_3O^-$ (m/z 43), considered to be the enolate anion $H_2C=CHO^{-3}$ and was very fast, $k = 3.0 \times 10^{-10} \text{ cm}^3 \text{ molecule}^{-1} \text{ s}^{-1}$ ($P_{\text{He}} = 0.5 \text{ torr}, \bar{v}$ = 80 m s⁻¹), being 43% of the collision limit¹⁴ ($k_{ADO} = 7.0 \times 10^{-10}$ cm³ molecule⁻¹ s⁻¹). Bohme and Young³ were unable to reconcile their results of this fast reaction with known EA's of O_2 and C_3H_5 . The recent experimentally determined $EA(C_3H_{5}) = 8.3 \pm 0.5$ kcal mol⁻¹ by Professor Barney Ellison¹⁵ taken with $EA(O_2) =$ 10.1 ± 0.2 kcal mol⁻¹⁴ allows for a slightly exthermic electron transfer between the two reactants.

The kinetic, product, and ΔH° data for the ion-molecule reactions of O_2^{-} with neutral organic substrates are summarized in Table I. In all cases, clean pseudo-first-order decay plots of log ion signal of O_2^{-} (m/z 32) vs. concentration of neutral reactants were observed. No $P_{\rm He}$ dependence was observed for these reactions when the flow parameters were changed from $P_{\rm He}$ = 0.5 torr and \bar{v} = 80 m s⁻¹ to P_{He} = 1.0 torr and \bar{v} = 40 m s⁻¹ unless otherwise noted. For reactions involving exclusive or partial termolecular reaction channels, the apparent bimolecular rate constants are given. The rate constants for the collision-limited ion-molecule reactions were calculated by using the average dipole orientation theory, k_{ADO} .¹⁴

Reactions of O_2^- with Alkyl Halides. To determine the gasphase kinetic nucleophilicity of O_2 in $S_N 2$ displacement reactions, 9,11 the reactions of O_2^- with CH₃X molecules were examined (reactions 1–3, Table I). The reaction of O_2^- with CH_3Br yielding Br⁻ (eq 1) proceeded at nearly the collision limit (k_{ADO}) . The

$$O_2^{-} + CH_3Br \rightarrow Br^{-} + CH_3O_2.$$
(1)
(m/z 79, 81)

exothermicity of this product-forming channel is $\Delta H^{\circ}(1) = -24.9$ kcal mol⁻¹.¹⁶⁻¹⁸ The reaction of O_2^{-1} with CH₃Cl producing Cl⁻ (eq 2) was also fast being 35% of the calculated collision limit. The exothermicity of eq 2 was $\Delta H^{\circ}(2) = -17.0 \text{ kcal mol}^{-1.16-18}$

$$O_2^{-} + CH_3Cl \rightarrow Cl^{-} + CH_3O_2^{-}$$
(2)
(m/z 35, 37)

The related S_N2 displacement of O₂- with CH₃F yielding F⁻ cannot occur under our experimental conditions since this channel is strongly endothermic, $\Delta H^{\circ} = +13.3 \text{ kcal mol}^{-1.17,18}$ However, a very slow reaction at the lower limit of detection in the FA was observed when CH_3F was added to the flow containing O_2^- at $P_{\rm He} = 1.0$ torr and $\bar{v} = 40$ m s⁻¹, $k \sim 3 \times 10^{-13}$ cm³ molecule⁻¹ s⁻¹. The product ion was the sum of the masses of the reactants m/z 66 and is considered to be the collisionally stabilized iondipole collision complex O_2^{-}/CH_3F which structurally may closely approximate the transition state for the $S_N 2$ displacement reaction. However, we hasten to point out that a number of other structures may better represent this anion-radical complex. That even a trace of the collision complex survives the conditions of the experiment, passage through orifices in two sampling nose cones, ion lenses, and the quadrupole rods with varying potentials on each component, is remarkable. The data require that three out of every 10000 collisions remain in the attractive ion-dipole potential well

⁽¹⁴⁾ Su, T.; Bowers, M. T. J. Chem. Phys. 1973, 58, 3027-3037; Int. J. Mass Spectrom. Ion Phys. 1973, 12, 347-356.

⁽¹⁵⁾ Personal communication from Professor Barney Ellison from the PES of C_3H_5 : Oakes, J. M.; Ellison, G. B. J. Am. Chem. Soc. 1984, 106, 7734-7741. This new value of $EA(C_3H_5)$ is about 0.2 eV lower than that reported by Zimmerman (Zimmerman, A. H.; Brauman, J. I. J. Am. Chem. Soc. 1977, 99, 3656-3568) using photodetachment of C₃H₅ in the trapped ion cell of an ICR spectrometer $(EA(C_3H_5) = 0.550 \pm 0.054 \text{ eV})$.

⁽¹⁶⁾ Cox, J. D.; Pilcher, G. "Thermochemistry of Organic and Organo-

⁽¹⁶⁾ CoX, D. P., Picher, G. Thermochemistry of Organic and Organic metallic Compounds"; Academic Press: New York, 1970. $\Delta H_f^{\circ}(CH_3Br) =$ -9.1 ± 0.3 kcal mol⁻¹; $\Delta H_f^{\circ}(CH_3Cl) = -20.5 \pm 0.1$ kcal mol⁻¹. (17) $\Delta H_f^{\circ}(X^-)$ calculated from $\Delta H_f^{\circ}(X_{\circ})^{18}$ and EA(X_•);^{4b} $\Delta H_f^{\circ}(Br^-) =$ -50.8 kcal mol⁻¹; $\Delta H_f^{\circ}(C\Gamma) = -54.4$ kcal mol⁻¹; $\Delta H_f^{\circ}(F^-) = -59.5$ kcal mol⁻¹. (18) Benson, S. W. "Thermochemical Kientics", 2nd ed.; Wiley-Intersci-ence: New York, 1976; $\Delta H_f^{\circ}(CH_3O_2^{\circ}) = +6.7$ kcal mol⁻¹; $\Delta H_f^{\circ}(C_2H_5O_2^{\circ}) =$ -1.8 kcal mol⁻¹; $\Delta H_f^{\circ}(CH_3F) = -56 \pm 2$ kcal mol⁻¹.

(considered to be 10-20 kcal mol⁻¹ deep) on the ion-molecule potential surface. The lifetime of the collision complex must be > 10^{-7} s to enable several collisions between it and the buffer gas and other neutrals present in the flow to cool the complex below the energy of the inlet channel.

Reactions of O₂⁻ with Ketones. The reaction of O₂⁻ with acetone (reaction 3) is, in part, understandable and, in part, somewhat of a mystery. The major ion product is m/z 90 which is the sum of the masses of O₂ and acetone. We believe this species is the bound tetrahedral adduct of nucleophilic carbonyl addition shown in eq 3.¹⁹ This structural assignment is supported by the increase in m/z 90 at $P_{\text{He}} = 1.0$ torr (87%) compared to the

$$O_2^{-} + (CH_3)_2 C = 0 - (m/2 90)$$

(m/2 90)

amount formed at $P_{\text{He}} = 0.5$ torr (79%) with no change in the rate constant. The ion product m/z 50 appears to be the monohydrate cluster ion O_2^{-} ·/H₂O which is slowly formed in the separate ion-molecule reaction of O_2^{-} · with H₂O. Addition of D₂O to m/z 50 yields the exchanged cluster m/z 52 (O_2^{-} ·/D₂O). Despite repeated and varied attempts to "dry" the acetone prior to and during distillation, formation of m/z 50 remained as a product ion.

While the termolecular addition of O_2^{-} to acetone occurred with only a modest rate constant, the reaction of O_2^{-} with biacetyl (reaction 4) was fast and produced the adduct m/z 118 (major) and the enolate anion m/z 85 (minor). At $P_{\text{He}} = 1.0$ torr, a small signal (~2%) at m/z 86 was observed which may be the ketyl

anion radical of biacetyl, $C_4H_6O^-$, the product of electron transfer. We have separately shown that biacetyl readily attachs electrons in the FA, yielding m/z 86. Formation of the enolate anion m/z85 requires that $\Delta H^{\circ}_{acid}(CH_3C(=O)C(=O)CH_3) < 355$ kcal mol⁻¹, the latter value being $PA(O_2^-) = \Delta H^{\circ}_{acid}(HO_2^-)$. Observation of m/z 86 means that $EA(CH_3C(=O)C(=O)CH_3) \sim$ $EA(O_2)$. Nucleophilic addition to a carbonyl group of biacetyl was expected to be much faster than with acetone since we had demonstrated this kinetic point in the reactions of these ketones with phenylnitrene anion radical (PhN^-).²⁰ However, the present examples require termolecular collisional stabilization of the adduct product rather than the radical β -fragmentation pathway available to the adduct formed from the reaction with PhN^{-2} .²⁰

The reaction of O_2 · with $CF_3C(=O)CH_3$ at $P_{He} = 0.5$ torr proceeded at the collision limit $(k_{ADO} = k_{total})$ exclusively by H⁺ transfer, producing the enolate anion $CF_3C(O^-)=CH_2$, m/z 111. By increasing P_{He} to 1.0 torr, 10% of the adduct m/z 144 was observed (eq 5). We believe that these results demonstrate that nucleophilic addition to carbonyl groups can occur competitive with other reaction channels, e.g., exothermic H⁺ transfer (eq 5a, $\Delta H^\circ = -4.3 \pm 2$ kcal mol⁻¹).⁸ However, adduct formation will only be observed if collisional stabilization of the adduct can occur

efficiently which depends on the structure and lifetime of the adduct, and on the nature of the bath gas components.

The reaction of O_2^{-} with $(CF_3)_2C=O$ also occurred at the collision limit, k_{ADO} , yielding approximately equal amounts of the adduct anion radical $(m/z \ 198)$ and $(CF_3)_2CO^{-}$, $(m/z \ 166)$, the product of electron transfer (eq 6). The electron affinity (EA)

$$O_2^{-} + (CF_3)_2 C = 0$$

 $(m/z \ 198)$
 $(CF_3)_2 C^{-} \cdot + O_2 \quad (6a)$
 $(m/z \ 166)$

of $(CF_3)_2C=0$ is estimated to be ~33 kcal mol⁻¹ since electron transfer was observed as a minor channel in the reaction of this ketone with PhN^{-,20} (EA(PhN) = 33.7 ± 0.3 kcal mol⁻¹ kcal mol⁻¹).²¹ Using EA((CF₃)₂CO) = 33 kcal mol⁻¹, ΔH° (reaction 6b) = -23 kcal mol⁻¹ if ${}^{3}O_{2}({}^{3}\Sigma_{g}^{-})$ is formed, but it is thermally neutral if ${}^{1}O_{2}({}^{2}\Delta_{g})$ is the product.²² Formation off the adduct m/z 198 is also believed to be exothermic, ΔH° (reaction 6a) ~ -35 kcal mol⁻¹.²³

In an attempt to better understand the processes in reaction 6, we have prepared $(CF_3)_2CO^ (m/z \ 166)$ by electron attachment with $(CF_3)_2C=0$ at the electron gun in the FA. Addition of 3O_2 to the flow containing only $m/z \ 166$ produced the adduct $m/z \ 198$ (eq iv), but with a small rate constant, $k = 1.2 \times 10^{-11} \text{ cm}^3$ molecule⁻¹ at $P_{\text{He}} = 0.5$ torr, $v = 80 \text{ m s}^{-1}$, and 1.0 torr, $v = 32 \text{ m s}^{-1}$ ($k_{\text{ADO}} = 5.7 \times 10^{-10} \text{ cm}^3$ molecule⁻¹ s⁻¹).¹⁴ The absence of P_{He} dependence on this reaction indicates that saturation of

$$(CF_3)_2 C = O^{-} + {}^3O_2 \xrightarrow{He} (CF_3)_2 C = O_2^{\bullet}$$
 (iv)
(*m/z* 198)

this termolecular reaction has occurred at our lowest pressure. Although reaction iv has a low efficiency $(k/k_{ADO} = 0.02)$, we have 10^{13} molecules cm⁻³ of ${}^{3}O_{2}$ present in the flow from the preparation of O_{2}^{-} when reaction 6 is carried out. This suggests that a major source of the adduct m/z 198 is the secondary reaction of $(CF_{3})_{2}CO^{-}$ with ${}^{3}O_{2}$. Therefore, we believe that the principal (or exclusive) primary reaction between O_{2}^{-} and $(C-F_{3})_{2}CO^{-}O$ is electron transfer (reaction 6b). The electronic state of the neutral dioxygen produced in this electron transfer reaction 6b is unknown.

Reactions of O₂⁻• with Esters. The reactions of O₂⁻• with simple alkyl esters have two primary reaction channels available, $S_N 2$ displacement (or E2 elimination with ethyl esters) at the etheral alkyl group and nucleophilic addition at the carbonyl carbon. With

⁽¹⁹⁾ See McDonald (McDonald, R. N.; Chowdhury, A. K. J. Am. Chem. Soc. 1983, 105, 7267-7271) for characterization of adducts formed by nucleophilic addition of F_3C^- to various carbonyl-containing molecules of ketones and esters in the gas phase.

⁽²⁰⁾ McDonald, R. N.; Chowdhury, A. K. J. Am. Chem. Soc. 1983, 105, 198-207.

⁽²¹⁾ Drzaic, P. S.; Brauman, J. I. J. Am. Chem. Soc. 1984. 106. 3443-3446.

 $^{(22) \}Delta H_{\rm f}^{\circ}({}^{1}O_2({}^{1}\Delta_g)) = 22.5 \text{ kcal mol}^{-1}$: Foote, C. S. Acc. Chem. Res. **1968**, *1*, 104–110.

⁽²³⁾ $\Delta H_f^{\circ}((CF_3)_2C=O) = -336.2 \text{ kcal mol}^{-1} (\text{calcd})^{18} \text{ using the group}$ equivalent value $C(F)_3(CO) = -152.4 \text{ kcal mol}^{-1}; \Delta H_f^{\circ}((CF_3)_2(O^{\circ})OO^{\circ}) = -381.2 \text{ kcal mol}^{-1} (\text{calcd})^{18} \text{ assuming } \Delta H^{\circ}_{\text{acid}}(\text{ROH}) = 347.4 \text{ kcal mol}^{-1}^{24} \text{ and } DH^{\circ}(\text{ROO}-\text{H}) = 90 \text{ kcal mol}^{-1}.$

⁽²⁴⁾ $\Delta H^{\circ}_{acid}((CF_3)_2CHOH) = 348.4 \pm 2 \text{ kcal mol}^{-1} \text{ has been derived from } \Delta G^{\circ}_{acid}((CF_3)_2CHOH) = 340.8 \pm 2 \text{ kcal mol}^{-1} (Professor R. W. Taft, private communication) assuming <math>\Delta S^{\circ}_{acid}((CF_3)_2CHOH) = \Delta S^{\circ}_{acid}(CF_3CH_2OH) = 25.5 \text{ cal mol}^{-1} \text{ deg}^{-1.8}$

 Table I. Summary of Kinetic and Product Data for the Ion-Molecule Reactions of the Dioxygen Anion Radical with Certain Neutral Organic Molecules

re-				fraction	$\Delta H^{\circ},^{\mathfrak{s}}$	7 6 3	1 (3
no.	ion + neutral reactants		products [assumed neutral]	of product	kcal mol ⁻¹	k_{iotal} , cm ³	k_{ADO} , cm ³
				1.00		1.2.14.10-9	
1	$O_2 \cdot + CH_3Br$	->	Br $[+ CH_3O_2 \cdot]$	1.00	-24.9	1.3×10^{-10}	1.7×10^{-9}
2	$O_2 + CH_3 CI$		$CI^{-}[+CH_{3}O_{2}\cdot]$	1.00	-17.0	7.4×10^{-10}	1.9×10^{-9}
3a	$O_2 + (CH_3)_2 C = 0$	ne	$(CH_3)_2C(O)O_2^{-1}$	0.79 (0.87)		2.3×10^{-11}	2.6×10^{-9}
3b			m/z 50 (O ₂ -·/H ₂ O)	0.21 (0.13)			
4a	$O_2 \rightarrow C(=0)C(=0)CH_3$	He	$CH_3C(=0)C(CH_3)(0)O_2^{-}$	0.90		1.4×10^{-9}	1.4×10^{-9}
4b			$H_2C = C(O^-)C(=O)CH_3 [+ HO_{2^*}]$	0.10			
5a	$O_2 - + CF_3C = O)CH_3$		$H_2C = C(O^-)CF_3 [+ HO_2^{-}]$	1.00 (0.90)	-4.3	2.2×10^{-9}	1.5×10^{-9}
5b		He	$(CF_3)(CH_3)C(O)O_2$ at $P_{H_e} = 1.0$ torr	(0.10)			
6	$O_2 \rightarrow + (CF_3)_2 C = O$	He	$(CF_3)_2C(O)O_2^{-1}$	see text	$\sim -35^{d}$	2.0×10^{-9}	1.7×10^{-9}
			$+(CF_{3})_{3}CO^{-1}[+O_{3}]$				
7a	$O_{7} + HCO_{7}CH_{7}$		HCO_{2}^{-} [+ CH ₂ O ₂]	0.90	-12.1	1.0×10^{-10}	1.9×10^{-9}
7b	2 2 3	He	$H(CH_{1}O)C(O)O_{1}^{-1}$	0.10			
8a	$O_{1} + CH_{1}CO_{2}CH_{1}$		$CH_2CO_2^{-1}$ [+ CH_2O_2]	0.91 (0.72)	-7.7	3.8×10^{-12}	1.9×10^{-9}
8h	-2	He	$CH_1(CH_2O)C(O)O_{2}$	0.09 (0.28)			
9a	$O_{1} + CE_{1}CO_{2}CH_{1}$		CF_2CO_2 [+ CH_2O_2]	0.98	-32.5	2.3×10^{-9}	24×10^{-9}
9h			$CF_{2}C(=0)0^{-1}$ [+ CH_{2}0]	0.02	54.5	2.5 7. 10	2.174 10
109	0.7 + CECO.C.H.		$CF_{1}CO_{1}^{-1}$ [+ $C_{1}H_{1}O_{2}$]	0.02	-32 50	26 × 10-9	24×10^{-9}
104	02 + - 01 300 202113		$CE_{1}(CE_{2}) = [+ C_{2}(CE_{2})]$	0.00	54.5	2.0 × 10	2.4 × 10
11	0 - + H C - C H C O C H	_	H C = C H C O = [+ C H O]	1.00		1.7×10^{-11}	20×10^{-9}
12	$O_2^{-} + H_2^{-} CHCO_2^{-} CH_3^{-}$	He	$\Omega_2 C = C \Pi C O_2 [+ C \Pi_3 O_2]$	1.00		1.7×10^{-10}	2.0 × 10
12	$O_2 \cdot + \Pi_2 C = CHCN$		$O_2(CH_2CHCN)_{1,2}$	1.00		1.0 × 10 **	3.3 × 10 -
13	×	\rightarrow	$HS^{-}[+H_2C=CHO_2 \cdot]$	1.00		6.5×10^{-10}	
	$0_2^{-1} + H_2 - C + C + C + C + C + C + C + C + C + C$						

^a Data for ΔH° 's are found in the introduction and in ref 7, 8, 16-18, and 29. ${}^{b}k_{\text{iotal}}$'s were determined at $P_{\text{He}} = 0.5$ torr and $\bar{v} = 80$ m s⁻¹, and checked at $P_{\text{He}} = 1.0$ torr and $\bar{v} = 40$ m s⁻¹. No P_{He} dependence was observed except where noted. k_{iotal} 's are estimated to be accurate to $\pm 30\%$. ^c Reference 14. d Reference 23. ^c Assumed to be that of reaction 9a. f Product data obtained at $P_{\text{He}} = 1.0$ torr and $\bar{v} = 40$ m s⁻¹.

 HCO_2CH_3 (reaction 7), the fast reaction with O_2^- occurred by both of these pathways, forming HCO_2^- (m/z 45), assumed by S_N2 displacement at CH₃ (major), and carbonyl addition, yielding the adduct m/z 92 (minor). No P_{He} dependency was observed

> $O_2^{-} + RCO_2CH_3 - O_1^{-} + CH_3O_2^{-} (7a.8a)$ $O_2^{-} + RCO_2CH_3 - O_1^{-} + COCH_3 (7b.8b)$ $O_2^{+} + RCO_2CH_3 - O_2^{+} + CH_3O_2^{-} (7a.8a)$

on either the product branching fraction or the rate constant within experimental error.

Formation of HCO_2^- (m/z 45) as the major product in a reasonably fast, exothermic reaction channel was expected on the basis of the results of the reactions with CH₃Br and CH₃Cl, and other CH₃X molecules to be presented. It was, therefore, surprising to learn that Johlman and Wilkins²⁵ observed no anionic products in their reaction of O2- with HCO2CH3 at low pressure (10^{-7} torr) in the trapped ion cell of their Fourier transform mass spectrometer. Since the presence of $\sim 10\%$ HCO₂H in our sample of HCO_2CH_3 could produce our results, we have established the absence of HCO_2H with the following results. (a) The ¹H NMR spectrum of the distilled, center-cut sample of HCO₂CH₃ showed that HCO₂H was absent prior to loading the ester sample into its storage bulb on the gas-handling rack for the FA. (b) Reaction of this sample of HCO_2CH_3 (used to obtain data in reaction 7, Table I) with Ph_2C^{-} (PA = 382 kcal mol⁻¹), a poor S_N^2 nucleophile, produced exclusively $Ph_2C=C(O^-)H$, m/z 195, by nucleophilic carbonyl addition followed by radical β -fragmentation with loss of \cdot OCH₃;²⁶ H⁺ transfer between HCO₂H (Δ H°_{acid} = 345 kcal mol⁻¹⁸) and Ph₂C⁻ occurring at the collision limit is exthermic by 37 kcal mol⁻¹. (c) Addition of excess HCO₂CH₃ to the flow containing HCO_2^- (m/z 45) and the adduct $H(C-H_3O)C(O)O_2^-$. (m/z 92) from the reaction of O_2^- . with HCO_2CH_3 does *not* yield the cluster ion in HCO_2^-/HCO_2H (m/z 91) which is rapidly formed when HCO_2H is added to a flow containing HCO_2^- . Only a slight decay of several of the background ions (see Experimental Section) was observed which together would account for $\leq 4\%$ of the observed HCO_2^- signal intensity. Therefore, we conclude that the primary processes in the reaction of O_2^- with HCO_2CH_3 are bimolecular S_N2 displacement yielding HCO_2^- and competitive termolecular addition producing the adduct $H(CH_3O)C(O)O_2^-$. (eq 7).

We are unable to reconcile these results of a reasonably fast S_N^2 reaction channel in the FA at $P_{He} = 0.5$ and 1.0 torr with the total absence of this channel at 10^{-7} torr in the FTMS experiment,²⁵ assuming that O_2^{-2} produced in both systems is in the same electronic and vibrational state. We are confident that ground-state $O_2^{-2}(^{2}\Pi_g)$ is formed in the present FA experiments since electron transfer between $C_3H_5^{-1}$ and O_2 is only ~ 2 kcal mol⁻¹ exothermic. The multiple collisions of $O_2^{-2}(^{2}\Pi_g)$ with the bath gas $(He/NH_3/C_3H_6/O_2)$ should remove any excess vibrational energy in the $O_2^{-2}(^{2}\Pi_g)$ as demonstrated by the absence of P_{He} dependence on this and other rate constants and branching ratios of bimolecular channels.

Calculations of the excited states of O_2^- . indicate that the ${}^4\Sigma_u^$ and ${}^2\Pi_u$ excited states are energetically feasible in the FTMS study especially with electron attachment to O_2 with 6 eV electrons.²⁵ Kebarle et al.²⁸ have shown that S_N2 reactions with $k_{obsd} < k_{coll}$ have a negative temperature dependence. However, we do not know if electronic or vibrationally excited states of O_2^- contribute to the absence of this S_N2 reaction in the FTMS.

The slower reaction of O_2^{-} with $CH_3CO_2CH_3$ (reaction 8) followed similar reaction channels, but in this case the branching fraction was P_{He} dependent. At $P_{He} = 0.5$ torr, $\bar{v} = 80$ m s⁻¹, the ratio of $CH_3CO_2^{-}$ (m/z 59)/ $CH_3(CH_3O)C(O)O_2^{-}$ (m/z 106) was 91/9, while at $P_{He} = 1.0$ torr, $\bar{v} = 41$ m s⁻¹ this ratio was 72/28. These latter data establish the competitive termolecular addition and bimolecular displacement channels in the reaction of O_2^{-} with $CH_3CO_2CH_3$.

⁽²⁵⁾ Johlman, C. L.; Wilkins, C. L. J. Am. Chem. Soc. 1985, 107, 327-332. We thank Professor Wilkins for a preprint and discussions of the FTMS results.

⁽²⁶⁾ Ph₂C⁻ is prepared in the FA from Ph₂C=N₂ by dissociative electron attachment: W. Y. Gung, MS Thesis, Kansas State University, 1984. The details of the PA, ΔH_1° , and chemical reaction of Ph₂C⁻ will be the subject of another publication.

⁽²⁷⁾ Krauss, M.; Neumann, D.; Wahl, A. C.; Das, G.; Zemke, W. Phys. Rev. A 1973, 7, 69-77.

⁽²⁸⁾ Caldwell, G.; Magnera, T. F.; Kebarle, P. J. Am. Chem. Soc. 1984, 106, 959-966.

Gas-Phase Ion-Molecule Reactions of O_2^{-} .

The reactions of O_2^{-} with methyl and ethyl trifluoroacetate were similar to each other, but they added a new wrinkle to the carbonyl addition chemistry. As expected, the major primary channel appears to be $S_N 2$ displacement on the alkyl group of the

ester yielding $CF_3CO_2^-$ (m/z 113). We believe this is also the mechanism of the major reaction channel with the ethyl ester (reaction 10a) even though E2 elimination giving $CF_3CO_2^-$ + $C_2H_4 + HO_2$ is modestly exothermic ($\Delta H^\circ = -13.3 \text{ kcal mol}^{-1}$). The minor primary product ion m/z 129 from both of these reactions is most reasonably represented as the conjugate base of peroxytrifluoroacetic acid, $CF_3C(=0)OO^-$. Its formation can be rationalized by anionic fragmentation of the carbonyl addition adduct $[CF_3C(O^-)(O_2)OR]$, giving the complex $[CF_3C(=$ $O(O_2^{-}/OR)$ which undergoes electron transfer yielding the complex $[CF_3C(=0))O_2^-/OR]$ followed by separation to give the observed product ion. This mechanism requires $EA(CF_3C_3)$ $(=0)O_2 \rightarrow EA(RO)^{29}$ which appears reasonable. That this type of adduct fragmentation is unique with the CF3CO2R reactions and not observed with HCO₂CH₃ or CH₃CO₂CH₃ may simply reflect differences in $EA(CF_3C(=0)O_2 \cdot) > EA(HC(=0)O_2 \cdot)$ and $EA(CH_3C(=O)O_2)$; the strongly basic CH_3O^- will not be ejected from the latter two adducts.

The reaction of O_2^{-} with methyl acrylate proceeded with a modest rate constant exclusively by S_N^2 displacement, yielding the carboxylate anion m/z 71 (reaction 11). This result will be discussed later in the context of S_N^2 reactions of O_2^{-} with CH₃X molecules.

$$O_2^{-} + H_2C = CHCO_2CH_3 \rightarrow H_2C = CHCO_2^{-} + CH_3O_2^{-}$$

$$(m/z \ 71)$$
(11)

Reactions of O₂⁻ with Acrylonitrile and Thiacyclopropane. Since O_2^{-} failed to oligomerize methyl acrylate, the reaction of O_2^{-} with the more reactive vinyl monomer acrylonitrile was examined. We observed a fast decay of the O_2^{-} signal and initial formation of a monomeric species m/z 85 ($O_2CH_2CHCN^{-}$). As further H_2C =CHCN was added the signal for m/z 85 decreased and the signal for a dimeric species m/z 138 rapidly increased. No further oligermization was observed. A trace of m/z 26 (CN⁻) was also formed in this process.

The apparent termination of this oligomerization at a dimeric species is in marked contrast to the oligomerization of $H_2C=C$ -HCN initiated by $^{-}CH_2CN$ which terminated at the tetramer, NCCH₂(-CH₂CH(CN))₃-CH₂CHCN^{-,30} Such early termination indicates that the dimeric anion radical m/z 138 has undergone molecular rearrangement, generating a more stable anion radical which is not effective in further propagation steps.^{12a,30} This rules out structures 1 and 2 as the observed forms of m/z

138. We favor structure 2 as the initially formed dimeric m/z138 due to the similarity in the fast first initiation rate constants with O_2^- and $^-CH_2CN$ as initiators and the equally fast propagation step.³⁰ Using a pseudobicyclic conformer of 2, 3, for convenience, we speculate that the stable m/z 138 is the π -an-

ion/radical 4 shown in eq v. The two steps of H⁺ and H-atom transfer would probably proceed separately rather than concertedly. The delocalized cyano-substituted, unsaturated ketenimine structure of neutral 4 could well have a positive EA (EA-(maleic anhydride) = 9.2 ± 4.6 kcal mol⁻¹)^{4b} and be expected to be unreactive in propagation reactions with H₂C=CHCN.

The fast reaction of O_2^- with thiacyclopropane produced HS⁻ (m/z 33) exclusively; ³⁴S was observed as m/z 35 (M + 2) which was 4.3% of the m/z 33 signal intensity (theory 4.4%). We believe HS⁻ is formed by initial nucleophilic, exothermic ring opening of thiacyclopropane with O_2^- giving 5 followed by elimination of HS⁻ producing the vinyl peroxy radical as a byproduct (eq vi).³¹

$$0_2^{-} + CH_2^{-} CH_2 \longrightarrow 0_2^{-} CH_2^{-} HS^{-} + 5$$

$$CH_2^{-} CH_2^{-} CH_2^{-} CH_2^{-} CH_2^{-} CH_2^{-} CH_2^{-} (vi)$$

Discussion

Nucleophilicity of O_2 in $S_N 2$ Displacement Reactions. The experimental and theory of S_N2 reactions in the gas phase have been summarized by several authors, 20.28.32 and recently the temperature dependence on these anionic displacement reactions was measured for several alkyl bromides reacting with Cl⁻.²⁸ Bohme et al.⁹ developed a simple kinetic scale of $S_N 2$ nucleophilicity for anionic nucleophiles based on their apparent activation energies (derived from $k_{exptl} = k_{ADO} \exp(-E_a/RT)$) and their variation with exothermicity of the reaction with CH_3X (X = F, Cl, Br). Using this approach, we calculate $E_a = 0.16$ kcal mol⁻¹ ($\Delta H^{\circ} = -24.9$ \pm 0.5 kcal mol⁻¹)¹⁶⁻¹⁸ for the O₂- + CH₃Br reaction and E_a = 0.56 kcal mol⁻¹ ($\Delta H^{\circ} = -17.0 \pm 0.3$ kcal mol⁻¹)¹⁶⁻¹⁸ for the reaction of O_2^- with CH₃Cl. The S_N2 displacement reaction of $O_2^- + CH_3F \rightarrow F^- + CH_3O_2$ is reasonably endothermic (ΔH° = +13.3 ± 2.2 kcal mol⁻¹)¹⁶⁻¹⁸ and thus could not be observed. Although these calculated barriers are undoubtedly too low,³² based on this analysis of the S_N2 reactions with CH₃Br and CH₃Cl, we conclude that O_2^{-} is kinetically a strong gas-phase nucleophile and ranks with other strong anionic nucleophiles (i.e., H⁻, F⁻, HO⁻, H_2N^- , CH_3O^- , and CH_3NH^-) in this reaction type and relative comparison.9,11

This is in spite of the fact that these reaction exothermicities are considerably smaller than those with the other powerful nucleophiles studied.^{9,11} The low thermodynamic basicity of O_2^{-} . (PA(O_2^{-}) = 354.6 ± 0.8 kcal mol⁻¹) and low methyl cation affinity ($O_2^{-} + CH_3^+ \rightarrow CH_3O_2^{-}, \Delta H^\circ = -245$ kcal mol⁻¹) contrast these thermochemical properties of other strong anionic oxygen nucleophiles, e.g., CH₃O⁻ (PA = 379.2 ± 2 kcal mol⁻¹ and CH₃⁺-affinity = 270 kcal mol⁻¹).⁸ These factors are paralleled in the smaller ΔH° 's for the reactions of O_2^{-} with CH₃X molecules. Thus, the high S_N2 nucleophilicity of O_2^{-} is anomolous using the usual parameters to define this "property". Pellerite and Brauman³² have used Marcus theory combined with RRKM calculations to model intrinsic nucleophilicities of anions with CH₃X molecules in S_N2 reactions. They suggested that the fast reaction of CH₃O⁻ with CH₃Cl has a high intrinsic barrier which

⁽²⁹⁾ Engelking (Engelking, P. C.; Ellison, G. B.; Lineberger, W. C. J. Chem. Phys. 1978, 69, 1826–1832) report $EA(CH_3O) = 36.2 \pm 0.5 \text{ kcal mol}^{-1}$.

⁽³⁰⁾ McDonald, R. N.; Chowdhury, A. K. J. Am. Chem. Soc. 1982, 104, 2675-2676.

⁽³¹⁾ McDonald, R. N.; Chowdhury, A. K. Macromolecules 1982, 15, 1640-1641.

⁽³²⁾ Pellerite. M. J.; Brauman, J. I. J. Am. Che. Soc. 1983, 105, 2672-2680, and previouw papers by Prof. Brauman's group.

Table II. Reactivity of O_2^- with CH₃X Molecules in S_N^2 Displacement Reactions Yielding X⁻ and Assumed Neutral CH₃O₂.

CH₃X	% S _N 2 channel	Δ H° , kcal/ mol	reaction effi- ciency ^a	$\Delta H^{o}_{acid}(HA) = PA(A^{-}),^{b} kcal/mol$
CF ₃ CO ₂ CH ₃	97	-32.5	0.92	323
CH ₃ Br	100	-24.9	0.76	324
CH ₃ Cl	100	-17.0	0.39	333
HCO ₂ CH ₃	90	-12.1	0.05	345
H ₂ C=CHCO ₂ CH ₃	100		0.03	
CH ₃ CO ₂ CH ₃	90_	-7.1	0.002	349

^a The fraction of k_{total} due to $S_N 2$ displacement divided by k_{ADO} . ^bReference 8.

is compensated for by a large CH_3^+ -affinity of CH_3O^- (large exothermicity), giving the observed low kinetic reaction barrier. Since the S_N^2 displacement reaction of O_2^- with CH_3Cl proceeds with a small thermodynamic contribution to lowering the intrinsic barrier, the intrinsic barrier for this reaction must also be small. From these arguments, we conclude that O_2^- is intrinsically a powerful ("super") nucleophile in S_N^2 processes.^{1a}

In Table I, the results with four methyl esters are also of interest in this discussion. These esters are HCO₂CH₃ (reaction 7), CH₃CO₂CH₃ (reaction 8), CF₃CO₂CH₃ (reaction 9), and H₂-C=CHCO₂CH₃ (reaction 11). The reactions of O₂⁻ with the first three of these methyl esters occurred mainly by S_N2 displacement, yielding the carboxylate anion with a minor channel involving carbonyl addition. The order of reactivity of O₂⁻ with those esters by this mechanism is listed in Table II. Here we see a correlation between the reaction efficiency of these three processes with the ΔH° for the reaction³³ and $\Delta H^{\circ}_{acid}(RCO_2H)^{8}$, reflecting the leaving group abilities of the RCO₂⁻ products.¹¹

The results obtained with H_2C —CHCO₂CH₃ strongly suggest that $\Delta H^{\circ}_{acid}(H_2C$ —CHCO₂H) = 347 ± 2 kcal mol⁻¹, intermediate between $\Delta H^{\circ}_{acid}(CH_3CO_2H)$ and $\Delta H^{\circ}_{acid}(HCO_2H)$.⁸ This modest change in ΔH°_{acid} between CH₃CO₂H and H₂C—CHCO₂H compared to C₆H₅CO₂H (ΔH°_{acid} = 338.8 ± 2 kcal mol⁻¹)⁸ is quite different from the condensed-phase pK_a 's (H₂O, 25°C) of these three acids (CH₃CO₂H, pK_a = 4.76; H₂C—CHCO₂H, pK_a = 4.25; and C₆H₅CO₂H, pK_a = 4.20).³⁴ If this estimate of ΔH°_{acid} -(H₂C—CHCO₂H) is correct, the similarity of the vinyl and phenyl substituents on the acidity of the carboxylic acid group in the condensed phase is due to solvation effects.

Nucleophilicity of O_2^{-} in Carbonyl Addition Reactions. Direct comparison of the nucleophilicity of O_2^{-} in bimolecular $S_N 2$ displacement reactions with methyl esters and termolecular carbonyl addition is not justified due to the limited data and P_{He} variations used in this study. The single obvious point is that these two different nucleophilic processes remain competitive (at least partially) even in the reactions occurring at the collision limit (reactions 9 and 10, Table I).

In the reactions of O_2^{-} with the four ketones investigated, adduct formation appears to be the exclusive product channel with acetone (ignoring formation of m/z 50, reaction 3) and was competitive with H^+ transfer with Facetyl (reaction 4) and to a lesser extent with $CF_3C(=O)CH_3$ (reaction 5), but apparently not with electron transfer to $(CF_3)_2C=O$ (reaction 6; see Results section). If we assume similar termolecular collisional stabilization efficiencies with the buffer gas components and the tetrahedral adducts formed by O_2^{-} adding to the ketones, we find that nucleophilic carbonyl addition follows the order $CF_3COCH_3 >$ $CH_3COCOCH_3 > CH_3COCH_3$. This simplifying assumption ignores factors such as variations in steric effects and changes in the number and the energy levels of the density of states of the different vibrationally excited adducts produced. However, this order is approximately that followed in the $k_{rel}^{C=0}$'s for the reaction of PhN⁻ with these ketones: CH₃COCOCH₃ > CF₃COCH₃ \gg CH₃COCH₃.²⁰ In these latter reactions, nucleophilic carbonyl addition is rapidly followed by radical β -fragmentation of acetyl or methyl radicals, respectively, from the tetrahedral anion-radical adduct. With the esters, methyl formate and acetate, it appears that addition of O_2^{-} to HCO₂CH₃ is faster than with CH₃CO₂CH₃ which is the same order of $k_{rel}^{c=0}$ observed in the reactions of these esters with PhN-.²⁰ Unfortunately, the termolecular addition reactions of F₃C⁻ with CH₃CO₂CH₃ and HCO₂CH₃ cannot be used as a direct comparison in the present termolecular reactions since the Riveros reaction^{25,35} with the stronger base F_3C^- and HCO₂CH₃ swamped that reaction (96% of the product channels).¹⁹

Summary. We have found that O_2^- is both kinetically and intrinsically a powerful nucleophile in gas-phase $S_N 2$ displacement reactions. Since O_2^- is a weak base in the gas phase, we have been able to examine $S_N 2$ reactions with a larger range of $CH_3 X$ molecules than previously possible with all other anions of high kinetic nucleophilicity. The resulting correlations of reaction efficiency vs. X^- leaving group and reaction exothermicity are similar to those observed in the condensed phase.

 O_2^{-} adds to the carbonyl group of ketones and esters forming adducts. This may occur directly by nucleophilic addition or stepwise, involving initial electron transfer if the electron affinity of the carbonyl-containing molecule is greater than that of dioxygen.

The present results offer additional insight into the gas-phase chemistry of O_2^- previously reported.^{36,37}

Acknowledgment. We thank the National Science Foundation and the U.S. Army Research Office for support of this study.

Registry No. $C_3H_5^-$, 1724-46-5; O₂, 7782-44-7; O₂⁻, 12185-07-8; CH₃Br, 74-83-9; CH₃Cl, 74-87-3; (CH₃)₂C=O, 67-64-1; CH₃C(=O)-C(=O)CH₃, 431-03-8; CF₃C(=O)CH₃, 421-50-1; (CF₃)₂C=O, 684-16-2; HCO₂CH₃, 107-31-3; CH₃CO₂CH₃, 79-20-9; CF₃CO₂CH₃, 431-47-0; CF₃CO₂C₂H₅, 383-63-1; H₂C=CHCO₂CH₃, 96-33-3; H₂C=CH-CN, 107-13-1; H₂CSCH₂, 420-12-2.

⁽³³⁾ Additional thermochemical values (in kcal mol⁻¹) used in the $\Delta H_f^{\circ}(HCO_2CH_3) = -83.6.^{18} \Delta H_f^{\circ}(CH_3CO_2CH_3) = -98.0.^{18} \text{ and } \Delta H_f^{\circ}(CF_3CO_2CH_3) = -240.7.^{20}$

⁽³⁴⁾ Brown, H. C.; McDaniel, D. H.; Hafliger, O. In "Determination of Organic Structures by Physical Methods"; Braude, E. A., Nachold, F. C., Eds.; Academic Press: New York, 1955; Chapter 14.

⁽³⁵⁾ Faigle, J. F. G.; Isolani, P. C.; Riveros, J. M. J. Am. Chem. Soc. 1976, 98, 2049–2052 and references therein.

⁽³⁶⁾ Johlman, C. L.; White, R. L.; Sawyer, D. T.; Wilkins, C. L. J. Am. Chem. Soc. 1983, 105, 2091-2092.

⁽³⁷⁾ Streit, G. E. J. Phys. Chem. 1982, 86, 2321-2324.